FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Simpson, L., Wieschaus, E. (1990). Zygotic activity of the nullo locus is required to stabilize the actin-myosin network during cellularization in Drosophila.  Development 110(): 851--863.
FlyBase ID
FBrf0051589
Publication Type
Research paper
Abstract
Cellularization of the Drosophila embryo requires the establishment of a hexagonal network of actin and myosin filaments that are interconnected around the nuclei in the cortex of the syncytial blastoderm. This cytoskeletal network provides the framework and possibly the contractile force for the membrane invaginations that synchronously subdivide the syncytial embryo into individual cells. Zygotic expression of the nullo locus is essential for the preservation of an intact actin-myosin network. Embryos deleted for the nullo locus have a disrupted network, resulting in the formation of many multinucleate cells. We show that nullo is not required for the initial formation of the actin-myosin network, but is necessary for the maintenance of its hexagonal shape during cellularization. The phenotype of embryonic mosaics is nonautonomous, indicating that nullo does not have to be expressed in every nucleus for proper cellularization. Examination of nullo mutant clones in adults reveals that nullo activity is not required for cell division in imaginal discs. Furthermore, germline clone experiments suggest that maternal expression of the nullo locus is not essential for either germline proliferation or the cellularization of progeny. We propose a model in which nullo functions specifically at cellularization to stabilize the actin-myosin network during contraction.
PubMed ID
PubMed Central ID
DOI
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Development
    Title
    Development
    Publication Year
    1987-
    ISBN/ISSN
    0950-1991
    Data From Reference