FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Rose, D., Chiba, A. (1999). A single growth cone is capable of integrating simultaneously presented and functionally distinct molecular cues during target recognition.  J. Neurosci. 19(12): 4899--4906.
FlyBase ID
FBrf0109037
Publication Type
Research paper
Abstract
A variety of cell recognition pathways affect neuronal target recognition. However, whether such pathways can converge at the level of a single growth cone is not well known. The RP3 motoneuron in Drosophila has previously been shown to respond to the muscle cell surface molecules TOLL and fasciclin III (FAS3), which are normally encountered during RP3 pathfinding in a sequential manner. TOLL and FAS3, putative "negative" and "positive" recognition molecules, respectively, affect RP3 antagonistically. Under normal conditions, TOLL and FAS3 together improve the accuracy of its target recognition. Here, we show that, when presented with concurrent TOLL and FAS3 expression, RP3 responds to both, integrating their effects. This was demonstrated most succinctly by single cell visualization methods. When a balance in relative expression levels between the two antagonistic cues is achieved, the RP3 growth cone exhibits a phenotype virtually identical to that seen when neither TOLL nor FAS3 is misexpressed. Thus, growth cones are capable of quantitatively evaluating distinct recognition cues and integrating them to attain a net result, in effect responding to the "balance of power" between positive and negative influences. We suggest that the ability to integrate multiple recognition pathways in real-time is one important way in which an individual growth cone interprets and navigates complex molecular environments.
PubMed ID
PubMed Central ID
PMC6782657 (PMC) (EuropePMC)
DOI
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Neurosci.
    Title
    Journal of Neuroscience
    Publication Year
    1981-
    ISBN/ISSN
    0270-6474 1529-2401
    Data From Reference
    Alleles (2)
    Genes (2)
    Transgenic Constructs (2)