FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Fergestad, T., Davis, W.S., Broadie, K. (1999). The stoned proteins regulate synaptic vesicle recycling in the presynaptic terminal.  J. Neurosci. 19(14): 5847--5860.
FlyBase ID
FBrf0109701
Publication Type
Research paper
Abstract
The Drosophila stoned locus was identified 25 years ago on the basis of stress-sensitive behavioral mutants (Grigliatti et al., 1973). The locus is dicistronic and encodes two distinct proteins, stoned A and stoned B, which are expressed specifically in presynaptic terminals at central and peripheral synapses. Several stoned mutant alleles cause embryonic lethality, suggesting that these proteins are essential for synaptic function. Physiological analyses at the stoned synapse reveal severe neurotransmission defects, including reduced and asynchronous neurotransmitter release and rapid fatigue after repetitive stimulation. At the EM level, stoned synapses show a depletion of synaptic vesicles and a concomitant increase in membrane-recycling intermediates. Mutant terminals also display a specific mislocalization of the synaptic vesicle protein synaptotagmin. These results suggest that the stoned proteins are essential for the recycling of synaptic vesicle membrane and are required for the proper sorting of synaptotagmin during endocytosis.
PubMed ID
PubMed Central ID
PMC6783101 (PMC) (EuropePMC)
DOI
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Neurosci.
    Title
    Journal of Neuroscience
    Publication Year
    1981-
    ISBN/ISSN
    0270-6474 1529-2401
    Data From Reference
    Aberrations (1)
    Alleles (10)
    Balancers (2)
    Genes (9)
    Insertions (1)
    Transgenic Constructs (2)