FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Larochelle, S., Chen, J., Knights, R., Pandur, J., Morcillo, P., Erdjument-Bromage, H., Tempst, P., Suter, B., Fisher, R.P. (2001). T-loop phosphorylation stabilizes the CDK7-cyclin H-MAT1 complex in vivo and regulates its CTD kinase activity.  EMBO J. 20(14): 3749--3759.
FlyBase ID
FBrf0137227
Publication Type
Research paper
Abstract
Cyclin-dependent kinase (CDK)7-cyclin H, the CDK-activating kinase (CAK) and TFIIH-associated kinase in metazoans can be activated in vitro through T-loop phosphorylation or binding to the RING finger protein MAT1. Although the two mechanisms can operate independently, we show that in a physiological setting, MAT1 binding and T-loop phosphorylation cooperate to stabilize the CAK complex of Drosophila. CDK7 forms a stable complex with cyclin H and MAT1 in vivo only when phosphorylated on either one of two residues (Ser164 or Thr170) in its T-loop. Mutation of both phosphorylation sites causes temperature-dependent dissociation of CDK7 complexes and lethality. Furthermore, phosphorylation of Thr170 greatly stimulates the activity of the CDK7- cyclin H-MAT1 complex towards the C-terminal domain of RNA polymerase II without significantly affecting activity towards CDK2. Remarkably, the substrate-specific increase in activity caused by T-loop phosphorylation is due entirely to accelerated enzyme turnover. Thus phosphorylation on Thr170 could provide a mechanism to augment CTD phosphorylation by TFIIH-associated CDK7, and thereby regulate transcription.
PubMed ID
PubMed Central ID
PMC125544 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    EMBO J.
    Title
    The EMBO Journal
    Publication Year
    1982-
    ISBN/ISSN
    0261-4189
    Data From Reference
    Aberrations (1)
    Alleles (5)
    Gene Groups (2)
    Genes (5)
    Transgenic Constructs (4)