FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Fujioka, M., Lear, B.C., Landgraf, M., Yusibova, G.L., Zhou, J., Riley, K.M., Patel, N.H., Jaynes, J.B. (2003). Even-skipped, acting as a repressor, regulates axonal projections in Drosophila.  Development 130(22): 5385--5400.
FlyBase ID
FBrf0167497
Publication Type
Research paper
Abstract
Nervous system-specific eve mutants were created by removing regulatory elements from a 16 kb transgene capable of complete rescue of normal eve function. When transgenes lacking the regulatory element for either RP2+a/pCC, EL or U/CQ neurons were placed in an eve-null background, eve expression was completely eliminated in the corresponding neurons, without affecting other aspects of eve expression. Many of these transgenic flies were able to survive to fertile adulthood. In the RP2+a/pCC mutant flies: (1) both RP2 and aCC showed abnormal axonal projection patterns, failing to innervate their normal target muscles; (2) the cell bodies of these neurons were positioned abnormally; and (3) in contrast to the wild type, pCC axons often crossed the midline. The Eve HD alone was able to provide a weak, partial rescue of the mutant phenotype, while both the Groucho-dependent and -independent repressor domains contributed equally to full rescue of each aspect of the mutant phenotype. Complete rescue was also obtained with a chimeric protein containing the Eve HD and the Engrailed repressor domain. Consistent with the apparent sufficiency of repressor function, a fusion protein between the Gal4 DNA-binding domain and Eve repressor domains was capable of actively repressing UAS target genes in these neurons. A key target of the repressor function of Eve was Drosophila Hb9, the derepression of which correlated with the mutant phenotype in individual eve-mutant neurons. Finally, homologues of Eve from diverse species were able to rescue the eve mutant phenotype, indicating conservation of both targeting and repression functions in the nervous system.
PubMed ID
PubMed Central ID
PMC2709291 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Development
    Title
    Development
    Publication Year
    1987-
    ISBN/ISSN
    0950-1991
    Data From Reference