FB2024_03 , released April 23, 2024
Reference Report
Open Close
Reference
Citation
Schotta, G., Lachner, M., Sarma, K., Ebert, A., Sengupta, R., Reuter, G., Reinberg, D., Jenuwein, T. (2004). A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin.  Genes Dev. 18(11): 1251--1262.
FlyBase ID
FBrf0178951
Publication Type
Research paper
Abstract
Histone lysine methylation is a central modification to mark functionally distinct chromatin regions. In particular, H3-K9 trimethylation has emerged as a hallmark of pericentric heterochromatin in mammals. Here we show that H4-K20 trimethylation is also focally enriched at pericentric heterochromatin. Intriguingly, H3-K9 trimethylation by the Suv39h HMTases is required for the induction of H4-K20 trimethylation, although the H4 Lys 20 position is not an intrinsic substrate for these enzymes. By using a candidate approach, we identified Suv4-20h1 and Suv4-20h2 as two novel SET domain HMTases that localize to pericentric heterochromatin and specifically act as nucleosomal H4-K20 trimethylating enzymes. Interaction of the Suv4-20h enzymes with HP1 isoforms suggests a sequential mechanism to establish H3-K9 and H4-K20 trimethylation at pericentric heterochromatin. Heterochromatic H4-K20 trimethylation is evolutionarily conserved, and in Drosophila, the Suv4-20 homolog is a novel PEV modifier to regulate position-effect variegation. Together, our data indicate a function for H4-K20 trimethylation in gene silencing and further suggest H3-K9 and H4-K20 trimethylation as important components of a repressive pathway that can index pericentric heterochromatin.
PubMed ID
PubMed Central ID
PMC420351 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Genes Dev.
    Title
    Genes & Development
    Publication Year
    1987-
    ISBN/ISSN
    0890-9369
    Data From Reference
    Aberrations (1)
    Alleles (3)
    Gene Groups (2)
    Genes (22)
    Insertions (1)