FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Galletta, B.J., Chakravarti, M., Banerjee, R., Abmayr, S.M. (2004). SNS: adhesive properties, localization requirements and ectodomain dependence in S2 cells and embryonic myoblasts.  Mech. Dev. 121(12): 1455--1468.
FlyBase ID
FBrf0180484
Publication Type
Research paper
Abstract
The body wall muscles in the Drosophila larva arise from interactions between Duf/Kirre and Irregular chiasm C-roughest (IrreC-rst)-expressing founder myoblasts and sticks-and-stones (SNS)-expressing fusion competent myoblasts in the embryo. Herein, we demonstrate that SNS mediates heterotypic adhesion of S2 cells with Duf/Kirre and IrreC-rst-expressing S2 cells, and colocalizes with these proteins at points of cell contact. These properties are independent of their transmembrane and cytoplasmic domains, and are observed quite readily with GPI-anchored forms of the ectodomains. Heterotypic interactions between Duf/Kirre and SNS-expressing S2 cells occur more rapidly and to a greater extent than homotypic interactions with other Duf/Kirre-expressing cells. In addition, Duf/Kirre and SNS are present in an immunoprecipitable complex from S2 cells. In the embryo, Duf/Kirre and SNS are present at points of contact between founder and fusion competent cells. Moreover, SNS clustering on the cell surface is dependent on Duf/Kirre and/or IrreC-rst. Finally, although the cytoplasmic and transmembrane domains of SNS are expendable for interactions in culture, they are essential for fusion of embryonic myoblasts.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mech. Dev.
    Title
    Mechanisms of Development
    Publication Year
    1990-
    ISBN/ISSN
    0925-4773
    Data From Reference
    Aberrations (1)
    Alleles (10)
    Genes (8)
    Physical Interactions (3)
    Cell Lines (1)
    Insertions (2)
    Experimental Tools (2)
    Transgenic Constructs (4)