FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Yao, C.A., Ignell, R., Carlson, J.R. (2005). Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna.  J. Neurosci. 25(37): 8359--8367.
FlyBase ID
FBrf0187906
Publication Type
Research paper
Abstract
Odor coding is based on the diverse sensitivities and response properties of olfactory receptor neurons (ORNs). In the Drosophila antenna, ORNs are housed in three major morphological types of sensilla. Although investigation of the Drosophila olfactory system has been expanding rapidly, the ORNs in one of these types, the coeloconic sensilla, have been essentially unexplored. We define four functional types of coeloconic sensilla through extracellular physiological recordings. Each type contains at least two neurons, with a total of at least seven distinct ORN classes that vary remarkably in their breadth of tuning. Analysis of 315 odorant-ORN combinations reveals how these neurons sample odor space via both excitation and inhibition. We identify a class of neurons that is narrowly tuned to small amines, and we find humidity detectors that define a cellular basis for hygroreception in Drosophila. The temporal dynamics of responses vary widely, enhancing the potential for complexity in the odor code. Molecular and genetic analysis shows that a broadly tuned ORN, antennal coeloconic 3B (ac3B), requires the odor receptor gene Or35a for its response in vivo. The activity of ac3B is not required for the response of the other ORN within that sensillum, ac3A. The functional analysis presented here, revealing a combination of highly specialized neurons and a broadly tuned ORN, along with the ancient origin of coeloconic sensilla, suggests that the specificities of these ORNs may reflect basic needs of an ancestral insect.
PubMed ID
PubMed Central ID
PMC6725686 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Neurosci.
    Title
    Journal of Neuroscience
    Publication Year
    1981-
    ISBN/ISSN
    0270-6474 1529-2401
    Data From Reference
    Alleles (3)
    Genes (3)
    Natural transposons (1)
    Insertions (1)
    Experimental Tools (1)
    Transgenic Constructs (2)