FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Wood, W., Faria, C., Jacinto, A. (2006). Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in Drosophila melanogaster.  J. Cell Biol. 173(3): 405--416.
FlyBase ID
FBrf0190948
Publication Type
Research paper
Abstract
Drosophila melanogaster hemocytes are highly motile macrophage-like cells that undergo a stereotypic pattern of migration to populate the whole embryo by late embryogenesis. We demonstrate that the migratory patterns of hemocytes at the embryonic ventral midline are orchestrated by chemotactic signals from the PDGF/VEGF ligands Pvf2 and -3 and that these directed migrations occur independently of phosphoinositide 3-kinase (PI3K) signaling. In contrast, using both laser ablation and a novel wounding assay that allows localized treatment with inhibitory drugs, we show that PI3K is essential for hemocyte chemotaxis toward wounds and that Pvf signals and PDGF/VEGF receptor expression are not required for this rapid chemotactic response. Our results demonstrate that at least two separate mechanisms operate in D. melanogaster embryos to direct hemocyte migration and show that although PI3K is crucial for hemocytes to sense a chemotactic gradient from a wound, it is not required to sense the growth factor signals that coordinate their developmental migrations along the ventral midline during embryogenesis.
PubMed ID
PubMed Central ID
PMC2063841 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Cell Biol.
    Title
    Journal of Cell Biology
    Publication Year
    1966-
    ISBN/ISSN
    0021-9525
    Data From Reference