FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Bach, E.A., Ekas, L.A., Ayala-Camargo, A., Flaherty, M.S., Lee, H., Perrimon, N., Baeg, G.H. (2007). GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo.  Gene Expr. Patterns 7(3): 323--331.
FlyBase ID
FBrf0195082
Publication Type
Research paper
Abstract
JAK/STAT signaling is essential for a wide range of developmental processes in Drosophila melanogaster. The mechanism by which the JAK/STAT pathway contributes to these processes has been the subject of recent investigation. However, a reporter that reflects activity of the JAK/STAT pathway in all Drosophila tissues has not yet been developed. By placing a fragment of the Stat92E target gene Socs36E, which contains at least two putative Stat92E binding sites, upstream of GFP, we generated three constructs that can be used to monitor JAK/STAT pathway activity in vivo. These constructs differ by the number of Stat92E binding sites and the stability of GFP. The 2XSTAT92E-GFP and 10XSTAT92E-GFP constructs contain 2 and 10 Stat92E binding sites, respectively, driving expression of enhanced GFP, while 10XSTAT92E-DGFP drives expression of destabilized GFP. We show that these reporters are expressed in the embryo in an overlapping pattern with Stat92E protein and in tissues where JAK/STAT signaling is required. In addition, these reporters accurately reflect JAK/STAT pathway activity at larval stages, as their expression pattern overlaps that of the activating ligand unpaired in imaginal discs. Moreover, the STAT92E-GFP reporters are activated by ectopic JAK/STAT signaling. STAT92E-GFP fluorescence is increased in response to ectopic upd in the larval eye disc and mis-expression of the JAK kinase hopscotch in the adult fat body. Lastly, these reporters are specifically activated by Stat92E, as STAT92E-GFP reporter expression is lost cell-autonomously in stat92E homozygous mutant tissue. In sum, we have generated in vivo GFP reporters that accurately reflect JAK/STAT pathway activation in a variety of tissues. These reporters are valuable tools to further investigate and understand the role of JAK/STAT signaling in Drosophila.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Gene Expr. Patterns
    Title
    Gene expression patterns : GEP
    Publication Year
    2002-
    ISBN/ISSN
    1567-133X 1872-7298
    Data From Reference
    Alleles (10)
    Gene Groups (1)
    Genes (8)
    Natural transposons (1)
    Insertions (4)
    Experimental Tools (2)
    Transgenic Constructs (7)