FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Homem, C.C., Peifer, M. (2009). Exploring the Roles of Diaphanous and Enabled Activity in Shaping the Balance between Filopodia and Lamellipodia.  Mol. Biol. Cell 20(24): 5138--5155.
FlyBase ID
FBrf0209542
Publication Type
Research paper
Abstract
During migration cell protrusions power cell extension and sample the environment. Different cells produce different protrusions, from keratocytes dominated by lamellipodia, to growth cones combining filopodia and lamellipodia, to dendritic spines. One key challenge is to determine how the toolkit of actin regulators are coordinated to generate these diverse protrusive arrays. Here we use Drosophila leading-edge (LE) cells to explore how Diaphanous (Dia)-related formins and Ena/VASP proteins cooperate in this process. We first dissect the Dia regulatory region, revealing novel roles for the GTPase-binding and FH3 domains in cortical localization, filopodial initiation, and lengthening. Second, we provide evidence that activating Dia mobilizes Ena from storage places near the LE to act at the LE. Further, Dia and Ena coIP and can recruit one another to new locations, suggesting cooperation is key to their mechanisms of action. Third, we directly explore the functional relationship between Dia and Ena, varying their levels and activity separately in the same cell type. Surprisingly, although each is sufficient to induce filopodia, together they induce lamellipodia. Our data suggest they work together in a complex and nonadditive way, with the ratio between active Dia and Ena being one factor that modulates the balance between filopodia and lamellipodia.
PubMed ID
PubMed Central ID
PMC2793291 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Biol. Cell
    Title
    Molecular Biology of the Cell
    Publication Year
    1992-
    ISBN/ISSN
    1059-1524
    Data From Reference