FB2024_04 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Steiger, D., Fetchko, M., Vardanyan, A., Atanesyan, L., Steiner, K., Turski, M.L., Thiele, D.J., Georgiev, O., Schaffner, W. (2010). The Drosophila Copper Transporter Ctr1C Functions in Male Fertility.  J. Biol. Chem. 285(22): 17089--17097.
FlyBase ID
FBrf0210824
Publication Type
Research paper
Abstract
Living organisms have evolved intricate systems to harvest trace elements from the environment, to control their intracellular levels, and to ensure adequate delivery to the various organs and cellular compartments. Copper is one of these trace elements. It is at the same time essential for life but also highly toxic, not least because it facilitates the generation of reactive oxygen species. In mammals, copper uptake in the intestine and copper delivery into other organs are mediated by the copper importer Ctr1. Drosophila has three Ctr1 homologs: Ctr1A, Ctr1B, and Ctr1C. Earlier work has shown that Ctr1A is an essential gene that is ubiquitously expressed throughout development, whereas Ctr1B is responsible for efficient copper uptake in the intestine. Here, we characterize the function of Ctr1C and show that it functions as a copper importer in the male germline, specifically in maturing spermatocytes and mature sperm. We further demonstrate that loss of Ctr1C in a Ctr1B mutant background results in progressive loss of male fertility that can be rescued by copper supplementation to the food. These findings hint at a link between copper and male fertility, which might also explain the high Ctr1 expression in mature mammalian spermatozoa. In both mammals and Drosophila, the X chromosome is known to be inactivated in the male germline. In accordance with such a scenario, we provide evidence that in Drosophila, the autosomal Ctr1C gene originated as a retrogene copy of the X-linked Ctr1A, thus maintaining copper delivery during male spermatogenesis.
PubMed ID
PubMed Central ID
PMC2878003 (PMC) (EuropePMC)
Related Publication(s)
FlyBase analysis

Summary of published retrogene analyses.
dos Santos, 2014, Summary of published retrogene analyses. [FBrf0225799]

Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Biol. Chem.
    Title
    Journal of Biological Chemistry
    Publication Year
    1905-
    ISBN/ISSN
    0021-9258
    Data From Reference