FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Rubinstein, C.D., Wolfner, M.F. (2013). Drosophila seminal protein ovulin mediates ovulation through female octopamine neuronal signaling.  Proc. Natl. Acad. Sci. U.S.A. 110(43): 17420--17425.
FlyBase ID
FBrf0223099
Publication Type
Research paper
Abstract
Across animal taxa, seminal proteins are important regulators of female reproductive physiology and behavior. However, little is understood about the physiological or molecular mechanisms by which seminal proteins effect these changes. To investigate this topic, we studied the increase in Drosophila melanogaster ovulation behavior induced by mating. Ovulation requires octopamine (OA) signaling from the central nervous system to coordinate an egg's release from the ovary and its passage into the oviduct. The seminal protein ovulin increases ovulation rates after mating. We tested whether ovulin acts through OA to increase ovulation behavior. Increasing OA neuronal excitability compensated for a lack of ovulin received during mating. Moreover, we identified a mating-dependent relaxation of oviduct musculature, for which ovulin is a necessary and sufficient male contribution. We report further that oviduct muscle relaxation can be induced by activating OA neurons, requires normal metabolic production of OA, and reflects ovulin's increasing of OA neuronal signaling. Finally, we showed that as a result of ovulin exposure, there is subsequent growth of OA synaptic sites at the oviduct, demonstrating that seminal proteins can contribute to synaptic plasticity. Together, these results demonstrate that ovulin increases ovulation through OA neuronal signaling and, by extension, that seminal proteins can alter reproductive physiology by modulating known female pathways regulating reproduction.
PubMed ID
PubMed Central ID
PMC3808635 (PMC) (EuropePMC)
Related Publication(s)
Note

Reproductive hacking A male seminal protein acts through intact reproductive pathways in female Drosophila.
Dustin Rubinstein and Wolfner, 2014, Fly 8(2): 80--85 [FBrf0226986]

Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Proc. Natl. Acad. Sci. U.S.A.
    Title
    Proceedings of the National Academy of Sciences of the United States of America
    Publication Year
    1915-
    ISBN/ISSN
    0027-8424
    Data From Reference
    Aberrations (1)
    Alleles (8)
    Genes (6)
    Insertions (1)
    Transgenic Constructs (5)