FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
LeÅ›niewska, K., Warbrick, E., Ohkura, H. (2014). Peptide aptamers define distinct EB1- and EB3-binding motifs and interfere with microtubule dynamics.  Mol. Biol. Cell 25(7): 1025--1036.
FlyBase ID
FBrf0224523
Publication Type
Research paper
Abstract
EB1 is a conserved protein that plays a central role in regulating microtubule dynamics and organization. It binds directly to microtubule plus ends and recruits other plus end-localizing proteins. Most EB1-binding proteins contain a Ser-any residue-Ile-Pro (SxIP) motif. Here we describe the isolation of peptide aptamers with optimized versions of this motif by screening for interaction with the Drosophila EB1 protein. The use of small peptide aptamers to competitively inhibit protein interaction and function is becoming increasingly recognized as a powerful technique. We show that SxIP aptamers can bind microtubule plus ends in cells and functionally act to displace interacting proteins by competitive binding. Their expression in developing flies can interfere with microtubules, altering their dynamics. We also identify aptamers binding to human EB1 and EB3, which have sequence requirements similar to but distinct from each other and from Drosophila EB1. This suggests that EB1 paralogues within one species may interact with overlapping but distinct sets of proteins in cells.
PubMed ID
PubMed Central ID
PMC3967968 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Biol. Cell
    Title
    Molecular Biology of the Cell
    Publication Year
    1992-
    ISBN/ISSN
    1059-1524
    Data From Reference