FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Remnant, E.J., Morton, C.J., Daborn, P.J., Lumb, C., Yang, Y.T., Ng, H.L., Parker, M.W., Batterham, P. (2014). The role of Rdl in resistance to phenylpyrazoles in Drosophila melanogaster.  Insect Biochem. Mol. Biol. 54(): 11--21.
FlyBase ID
FBrf0226933
Publication Type
Research paper
Abstract
Extensive use of older generation insecticides may result in pre-existing cross-resistance to new chemical classes acting at the same target site. Phenylpyrazole insecticides block inhibitory neurotransmission in insects via their action on ligand-gated chloride channels (LGCCs). Phenylpyrazoles are broad-spectrum insecticides widely used in agriculture and domestic pest control. So far, all identified cases of target site resistance to phenylpyrazoles are based on mutations in the Rdl (Resistance to dieldrin) LGCC subunit, the major target site for cyclodiene insecticides. We examined the role that mutations in Rdl have on phenylpyrazole resistance in Drosophila melanogaster, exploring naturally occurring variation, and generating predicted resistance mutations by mutagenesis. Natural variation at the Rdl locus in inbred strains of D. melanogaster included gene duplication, and a line containing two Rdl mutations found in a highly resistant line of Drosophila simulans. These mutations had a moderate impact on survival following exposure to two phenylpyrazoles, fipronil and pyriprole. Homology modelling suggested that the Rdl chloride channel pore contains key residues for binding fipronil and pyriprole. Mutagenesis of these sites and assessment of resistance in vivo in transgenic lines showed that amino acid identity at the Ala(301) site influenced resistance levels, with glycine showing greater survival than serine replacement. We confirm that point mutations at the Rdl 301 site provide moderate resistance to phenylpyrazoles in D. melanogaster. We also emphasize the beneficial aspects of testing predicted mutations in a whole organism to validate a candidate gene approach.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Insect Biochem. Mol. Biol.
    Title
    Insect Biochemistry and Molecular Biology
    Publication Year
    1992-
    ISBN/ISSN
    0965-1748
    Data From Reference
    Aberrations (1)
    Alleles (8)
    Chemicals (2)
    Genes (1)
    Natural transposons (1)
    Transgenic Constructs (6)