FB2024_04 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Wünsch, D., Hahlbrock, A., Heiselmayer, C., Bäcker, S., Heun, P., Goesswein, D., Stöcker, W., Schirmeister, T., Schneider, G., Krämer, O.H., Knauer, S.K., Stauber, R.H. (2015). Fly versus man: evolutionary impairment of nucleolar targeting affects the degradome of Drosophila's Taspase1.  FASEB J. 29(5): 1973--1985.
FlyBase ID
FBrf0228246
Publication Type
Research paper
Abstract
Human Taspase1 is essential for development and cancer by processing critical regulators, such as the mixed-lineage leukemia protein. Likewise, its ortholog, trithorax, is cleaved by Drosophila Taspase1 (dTaspase1), implementing a functional coevolution. To uncover novel mechanism regulating protease function, we performed a functional analysis of dTaspase1 and its comparison to the human ortholog. dTaspase1 contains an essential nucleophile threonine(195), catalyzing cis cleavage into its α- and β-subunits. A cell-based assay combined with alanine scanning mutagenesis demonstrated that the target cleavage motif for dTaspase1 (Q(3)[F/I/L/M](2)D(1)↓G(1')X(2')X(3')) differs significantly from the human ortholog (Q(3)[F,I,L,V](2)D(1)↓G(1')x(2')D(3')D(4')), predicting an enlarged degradome containing 70 substrates for Drosophila. In contrast to human Taspase1, dTaspase1 shows no discrete localization to the nucleus/nucleolus due to the lack of the importin-α/nucleophosmin1 interaction domain (NoLS) conserved in all vertebrates. Consequently, dTaspase1 interacts with neither the Drosophila nucleoplasmin-like protein nor human nucleophosmin1. The impact of localization on the protease's degradome was confirmed by demonstrating that dTaspase1 did not efficiently process nuclear substrates, such as upstream stimulatory factor 2. However, genetic introduction of the NoLS into dTaspase1 restored its nucleolar localization, nucleophosmin1 interaction, and efficient cleavage of nuclear substrates. We report that evolutionary functional divergence separating vertebrates from invertebrates can be achieved for proteases by a transport/localization-regulated mechanism.-Wünsch, D., Hahlbrock, A., Heiselmayer, C., Bäcker, S., Heun, P., Goesswein, D., Stöcker, W., Schirmeister, T., Schneider, G., Krämer, O. H., Knauer, S. K., Stauber, R. H. Fly versus man: evolutionary impairment of nucleolar targeting affects the degradome of Drosophila's Taspase1.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    FASEB J.
    Title
    FASEB Journal (Federation of American Societies for Experimental Biology)
    Publication Year
    1987-
    ISBN/ISSN
    0892-6638
    Data From Reference
    Gene Groups (1)
    Genes (1)