FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Na, J., Sweetwyne, M.T., Park, A.S., Susztak, K., Cagan, R.L. (2015). Diet-Induced Podocyte Dysfunction in Drosophila and Mammals.  Cell Rep. 12(4): 636--647.
FlyBase ID
FBrf0229152
Publication Type
Research paper
Abstract
Diabetic nephropathy is a major cause of end-stage kidney disease. Characterized by progressive microvascular disease, most efforts have focused on injury to the glomerular endothelium. Recent work has suggested a role for the podocyte, a highly specialized component of the glomerular filtration barrier. Here, we demonstrate that the Drosophila nephrocyte, a cell analogous to the mammalian podocyte, displays defects that phenocopy aspects of diabetic nephropathy in animals fed chronic high dietary sucrose. Through functional studies, we identify an OGT-Polycomb-Knot-Sns pathway that links dietary sucrose to loss of the Nephrin ortholog Sns. Reducing OGT through genetic or drug means is sufficient to rescue loss of Sns, leading to overall extension of lifespan. We demonstrate upregulation of the Knot ortholog EBF2 in glomeruli of human diabetic nephropathy patients and a mouse ob/ob diabetes model. Furthermore, we demonstrate rescue of Nephrin expression and cell viability in ebf2(-/-) primary podocytes cultured in high glucose.
Graphical Abstract
Obtained with permission from Cell Press.
PubMed ID
PubMed Central ID
PMC4532696 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Cell Rep.
    Title
    Cell reports
    ISBN/ISSN
    2211-1247
    Data From Reference