FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Zhang, R., Miner, J.J., Gorman, M.J., Rausch, K., Ramage, H., White, J.P., Zuiani, A., Zhang, P., Fernandez, E., Zhang, Q., Dowd, K.A., Pierson, T.C., Cherry, S., Diamond, M.S. (2016). A CRISPR screen defines a signal peptide processing pathway required by flaviviruses.  Nature 535(7610): 164--168.
FlyBase ID
FBrf0233075
Publication Type
Research paper
Abstract
Flaviviruses infect hundreds of millions of people annually, and no antiviral therapy is available. We performed a genome-wide CRISPR/Cas9-based screen to identify host genes that, when edited, resulted in reduced flavivirus infection. Here, we validated nine human genes required for flavivirus infectivity, and these were associated with endoplasmic reticulum functions including translocation, protein degradation, and N-linked glycosylation. In particular, a subset of endoplasmic reticulum-associated signal peptidase complex (SPCS) proteins was necessary for proper cleavage of the flavivirus structural proteins (prM and E) and secretion of viral particles. Loss of SPCS1 expression resulted in markedly reduced yield of all Flaviviridae family members tested (West Nile, Dengue, Zika, yellow fever, Japanese encephalitis, and hepatitis C viruses), but had little impact on alphavirus, bunyavirus, or rhabdovirus infection or the surface expression or secretion of diverse host proteins. We found that SPCS1 dependence could be bypassed by replacing the native prM protein leader sequences with a class I major histocompatibility complex (MHC) antigen leader sequence. Thus, SPCS1, either directly or indirectly via its interactions with unknown host proteins, preferentially promotes the processing of specific protein cargo, and Flaviviridae have a unique dependence on this signal peptide processing pathway. SPCS1 and other signal processing pathway members could represent pharmacological targets for inhibiting infection by the expanding number of flaviviruses of medical concern.
PubMed ID
PubMed Central ID
PMC4945490 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Nature
    Title
    Nature
    Publication Year
    1869-
    ISBN/ISSN
    0028-0836
    Data From Reference
    Genes (8)
    Human Disease Models (1)
    Cell Lines (1)