FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Marchetti, G., Tavosanis, G. (2017). Steroid Hormone Ecdysone Signaling Specifies Mushroom Body Neuron Sequential Fate via Chinmo.  Curr. Biol. 27(19): 3017--3024.e4.
FlyBase ID
FBrf0236906
Publication Type
Research paper
Abstract
The functional variety in neuronal composition of an adult brain is established during development. Recent studies proposed that interactions between genetic intrinsic programs and external cues are necessary to generate proper neural diversity [1]. However, the molecular mechanisms underlying this developmental process are still poorly understood. Three main subtypes of Drosophila mushroom body (MB) neurons are sequentially generated during development and provide a good example of developmental neural plasticity [2]. Our present data propose that the environmentally controlled steroid hormone ecdysone functions as a regulator of early-born MB neuron fate during larval-pupal transition. We found that the BTB-zinc finger factor Chinmo acts upstream of ecdysone signaling to promote a neuronal fate switch. Indeed, Chinmo regulates the expression of the ecdysone receptor B1 isoform to mediate the production of γ and α'β' MB neurons. In addition, we provide genetic evidence for a regulatory negative feedback loop driving the α'β' to αβ MB neuron transition in which ecdysone signaling in turn controls microRNA let-7 depression of Chinmo expression. Thus, our results uncover a novel interaction in the MB neural specification pathway for temporal control of neuronal identity by interplay between an extrinsic hormonal signal and an intrinsic transcription factor cascade.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Curr. Biol.
    Title
    Current Biology
    Publication Year
    1991-
    ISBN/ISSN
    0960-9822
    Data From Reference