FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Panta, M., Kump, A.J., Dalloul, J.M., Schwab, K.R., Ahmad, S.M. (2020). Three distinct mechanisms, Notch instructive, permissive, and independent, regulate the expression of two different pericardial genes to specify cardiac cell subtypes.  PLoS ONE 15(10): e0241191.
FlyBase ID
FBrf0247019
Publication Type
Research paper
Abstract
The development of a complex organ involves the specification and differentiation of diverse cell types constituting that organ. Two major cell subtypes, contractile cardial cells (CCs) and nephrocytic pericardial cells (PCs), comprise the Drosophila heart. Binding sites for Suppressor of Hairless [Su(H)], an integral transcription factor in the Notch signaling pathway, are enriched in the enhancers of PC-specific genes. Here we show three distinct mechanisms regulating the expression of two different PC-specific genes, Holes in muscle (Him), and Zn finger homeodomain 1 (zfh1). Him transcription is activated in PCs in a permissive manner by Notch signaling: in the absence of Notch signaling, Su(H) forms a repressor complex with co-repressors and binds to the Him enhancer, repressing its transcription; upon alleviation of this repression by Notch signaling, Him transcription is activated. In contrast, zfh1 is transcribed by a Notch-instructive mechanism in most PCs, where mere alleviation of repression by preventing the binding of Su(H)-co-repressor complex is not sufficient to activate transcription. Our results suggest that upon activation of Notch signaling, the Notch intracellular domain associates with Su(H) to form an activator complex that binds to the zfh1 enhancer, and that this activator complex is necessary for bringing about zfh1 transcription in these PCs. Finally, a third, Notch-independent mechanism activates zfh1 transcription in the remaining, even skipped-expressing, PCs. Collectively, our data show how the same feature, enrichment of Su(H) binding sites in PC-specific gene enhancers, is utilized by two very distinct mechanisms, one permissive, the other instructive, to contribute to the same overall goal: the specification and differentiation of a cardiac cell subtype by activation of the pericardial gene program. Furthermore, our results demonstrate that the zfh1 enhancer drives expression in two different domains using distinct Notch-instructive and Notch-independent mechanisms.
PubMed ID
PubMed Central ID
PMC7591092 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    PLoS ONE
    Title
    PLoS ONE
    Publication Year
    2006-
    ISBN/ISSN
    1932-6203
    Data From Reference