FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Napoletano, F., Ferrari Bravo, G., Voto, I.A.P., Santin, A., Celora, L., Campaner, E., Dezi, C., Bertossi, A., Valentino, E., Santorsola, M., Rustighi, A., Fajner, V., Maspero, E., Ansaloni, F., Cancila, V., Valenti, C.F., Santo, M., Artimagnella, O.B., Finaurini, S., Gioia, U., Polo, S., Sanges, R., Tripodo, C., Mallamaci, A., Gustincich, S., d'Adda di Fagagna, F., Mantovani, F., Specchia, V., Del Sal, G. (2021). The prolyl-isomerase PIN1 is essential for nuclear Lamin-B structure and function and protects heterochromatin under mechanical stress.  Cell Rep. 36(11): 109694.
FlyBase ID
FBrf0251321
Publication Type
Research paper
Abstract
Chromatin organization plays a crucial role in tissue homeostasis. Heterochromatin relaxation and consequent unscheduled mobilization of transposable elements (TEs) are emerging as key contributors of aging and aging-related pathologies, including Alzheimer's disease (AD) and cancer. However, the mechanisms governing heterochromatin maintenance or its relaxation in pathological conditions remain poorly understood. Here we show that PIN1, the only phosphorylation-specific cis/trans prolyl isomerase, whose loss is associated with premature aging and AD, is essential to preserve heterochromatin. We demonstrate that this PIN1 function is conserved from Drosophila to humans and prevents TE mobilization-dependent neurodegeneration and cognitive defects. Mechanistically, PIN1 maintains nuclear type-B Lamin structure and anchoring function for heterochromatin protein 1α (HP1α). This mechanism prevents nuclear envelope alterations and heterochromatin relaxation under mechanical stress, which is a key contributor to aging-related pathologies.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Cell Rep.
    Title
    Cell reports
    ISBN/ISSN
    2211-1247
    Data From Reference
    Alleles (17)
    Chemicals (1)
    Genes (11)
    Human Disease Models (2)
    Physical Interactions (5)
    Natural transposons (2)
    Insertions (1)
    Experimental Tools (2)
    Transgenic Constructs (10)