FB2024_04 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Gera, J., Budakoti, P., Suhag, M., Mandal, L., Mandal, S. (2022). Physiological ROS controls Upd3-dependent modeling of ECM to support cardiac function in Drosophila.  Sci. Adv. 8(7): eabj4991.
FlyBase ID
FBrf0252729
Publication Type
Research paper
Abstract
Despite their highly reactive nature, reactive oxygen species (ROS) at the physiological level serve as signaling molecules regulating diverse biological processes. While ROS usually act autonomously, they also function as local paracrine signals by diffusing out of the cells producing them. Using in vivo molecular genetic analyses in Drosophila, we provide evidence for ROS-dependent paracrine signaling that does not entail ROS release. We show that elevated levels of physiological ROS within the pericardial cells activate a signaling cascade transduced by Ask1, c-Jun N-terminal kinase, and p38 to regulate the expression of the cytokine Unpaired 3 (Upd3). Upd3 released by the pericardial cells controls fat body-specific expression of the extracellular matrix (ECM) protein Pericardin, essential for cardiac function and healthy life span. Therefore, our work reveals an unexpected inter-organ communication circuitry wherein high physiological levels of ROS regulate cytokine-dependent modulation of cardiac ECM with implications in normal and pathophysiological conditions.
PubMed ID
PubMed Central ID
PMC8856619 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Sci. Adv.
    Title
    Science advances
    ISBN/ISSN
    2375-2548
    Data From Reference