FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Song, X., Cui, L., Wu, M., Wang, S., Song, Y., Liu, Z., Xue, Z., Chen, W., Zhang, Y., Li, H., Sun, L., Liang, X. (2023). DCX-EMAP is a core organizer for the ultrastructure of Drosophila mechanosensory organelles.  J. Cell Biol. 222(10): e202209116.
FlyBase ID
FBrf0257425
Publication Type
Research paper
Abstract
Mechanoreceptor cells develop specialized mechanosensory organelles (MOs), where force-sensitive channels and supporting structures are organized in an orderly manner to detect forces. It is intriguing how MOs are formed. Here, we address this issue by studying the MOs of fly ciliated mechanoreceptors. We show that the main structure of the MOs is a compound cytoskeleton formed of short microtubules and electron-dense materials (EDMs). In a knock-out mutant of DCX-EMAP, this cytoskeleton is nearly absent, suggesting that DCX-EMAP is required for the formation of the MOs and in turn fly mechanotransduction. Further analysis reveals that DCX-EMAP expresses in fly ciliated mechanoreceptors and localizes to the MOs. Moreover, it plays dual roles by promoting the assembly/stabilization of the microtubules and the accumulation of the EDMs in the MOs. Therefore, DCX-EMAP serves as a core ultrastructural organizer of the MOs, and this finding provides novel molecular insights as to how fly MOs are formed.
PubMed ID
PubMed Central ID
PMC10471123 (PMC) (EuropePMC)
Related Publication(s)
Note

Nanoscale architect: Illuminating the key organizer of the fruit fly's sensory world.
Lu and Gelfand, 2023, J. Cell Biol. 222(10): e202308028 [FBrf0257525]

Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Cell Biol.
    Title
    Journal of Cell Biology
    Publication Year
    1966-
    ISBN/ISSN
    0021-9525
    Data From Reference