FB2024_02 , released April 23, 2024
Reference Report
Open Close
Reference
Citation
Vieira Contreras, F., Auger, G.M., Müller, L., Richter, V., Huetteroth, W., Seufert, F., Hildebrand, P.W., Scholz, N., Thum, A.S., Ljaschenko, D., Blanco-Redondo, B., Langenhan, T. (2024). The adhesion G-protein-coupled receptor mayo/CG11318 controls midgut development in Drosophila.  Cell Rep. 43(1): 113640.
FlyBase ID
FBrf0258633
Publication Type
Research paper
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) form a large family of cell surface molecules with versatile tasks in organ development. Many aGPCRs still await their functional and pharmacological deorphanization. Here, we characterized the orphan aGPCR CG11318/mayo of Drosophila melanogaster and found it expressed in specific regions of the gastrointestinal canal and anal plates, epithelial specializations that control ion homeostasis. Genetic removal of mayo results in tachycardia, which is caused by hyperkalemia of the larval hemolymph. The hyperkalemic effect can be mimicked by a raise in ambient potassium concentration, while normal potassium levels in mayo[KO] mutants can be restored by pharmacological inhibition of potassium channels. Intriguingly, hyperkalemia and tachycardia are caused non-cell autonomously through mayo-dependent control of enterocyte proliferation in the larval midgut, which is the primary function of this aGPCR. These findings characterize the ancestral aGPCR Mayo as a homeostatic regulator of gut development.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Cell Rep.
    Title
    Cell reports
    ISBN/ISSN
    2211-1247
    Data From Reference