FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Wu, Z., Chen, H., Zhang, Y., Wang, Y., Wang, Q., Augière, C., Hou, Y., Fu, Y., Peng, Y., Durand, B., Wei, Q. (2024). Cep131-Cep162 and Cby-Fam92 complexes cooperatively maintain Cep290 at the basal body and contribute to ciliogenesis initiation.  PLoS Biol. 22(3): e3002330.
FlyBase ID
FBrf0258899
Publication Type
Research paper
Abstract
Cilia play critical roles in cell signal transduction and organ development. Defects in cilia function result in a variety of genetic disorders. Cep290 is an evolutionarily conserved ciliopathy protein that bridges the ciliary membrane and axoneme at the basal body (BB) and plays critical roles in the initiation of ciliogenesis and TZ assembly. How Cep290 is maintained at BB and whether axonemal and ciliary membrane localized cues converge to determine the localization of Cep290 remain unknown. Here, we report that the Cep131-Cep162 module near the axoneme and the Cby-Fam92 module close to the membrane synergistically control the BB localization of Cep290 and the subsequent initiation of ciliogenesis in Drosophila. Concurrent deletion of any protein of the Cep131-Cep162 module and of the Cby-Fam92 module leads to a complete loss of Cep290 from BB and blocks ciliogenesis at its initiation stage. Our results reveal that the first step of ciliogenesis strictly depends on cooperative and retroactive interactions between Cep131-Cep162, Cby-Fam92 and Cep290, which may contribute to the complex pathogenesis of Cep290-related ciliopathies.
PubMed ID
PubMed Central ID
PMC10914257 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    PLoS Biol.
    Title
    PLoS Biology
    Publication Year
    2003-
    ISBN/ISSN
    1545-7885 1544-9173
    Data From Reference