FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Griffitts, J.S., Huffman, D.L., Whitacre, J.L., Barrows, B.D., Marroquin, L.D., Muller, R., Brown, J.R., Hennet, T., Esko, J.D., Aroian, R.V. (2003). Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions.  J. Biol. Chem. 278(46): 45594--45602.
FlyBase ID
FBrf0167748
Publication Type
Research paper
Abstract
Crystal (Cry) proteins made by the bacterium Bacillus thuringiensis are pore-forming toxins that specifically target insects and nematodes and are used around the world to kill insect pests. To better understand how pore-forming toxins interact with their host, we have screened for Caenorhabditis elegans mutants that resist Cry protein intoxication. We find that Cry toxin resistance involves the loss of two glycosyltransferase genes, bre-2 and bre-4. These glycosyltransferases function in the intestine to confer susceptibility to toxin. Furthermore, they are required for the interaction of active toxin with intestinal cells, suggesting they make an oligosaccharide receptor for toxin. Similarly, the bre-3 resistance gene is also required for toxin interaction with intestinal cells. Cloning of the bre-3 gene indicates it is the C. elegans homologue of the Drosophila egghead (egh) gene. This identification is striking given that the previously identified bre-5 has homology to Drosophila brainiac (brn) and that egh-brn likely function as consecutive glycosyltransferases in Drosophila epithelial cells. We find that, like in Drosophila, bre-3 and bre-5 act in a single pathway in C. elegans. bre-2 and bre-4 are also part of this pathway, thereby extending it. Consistent with its homology to brn, we demonstrate that C. elegans bre-5 rescues the Drosophila brn mutant and that BRE-5 encodes the dominant UDP-GlcNAc:Man GlcNAc transferase activity in C. elegans. Resistance to Cry toxins has uncovered a four component glycosylation pathway that is functionally conserved between nematodes and insects and that provides the basis of the dominant mechanism of resistance in C. elegans.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Biol. Chem.
    Title
    Journal of Biological Chemistry
    Publication Year
    1905-
    ISBN/ISSN
    0021-9258
    Data From Reference
    Alleles (8)
    Genes (5)
    Experimental Tools (1)
    Transgenic Constructs (6)