FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Liu, X., Davis, R.L. (2009). The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning.  Nat. Neurosci. 12(1): 53--59.
FlyBase ID
FBrf0207183
Publication Type
Research paper
Abstract
GABAergic neurotransmitter systems are important for many cognitive processes, including learning and memory. We identified a single neuron in each hemisphere of the Drosophila brain, the anterior paired lateral (APL) neuron, as a GABAergic neuron that broadly innervated the mushroom bodies. Reducing GABA synthesis in the APL neuron enhanced olfactory learning, suggesting that the APL neuron suppressed learning by releasing the inhibitory neurotransmitter GABA. Functional optical-imaging experiments revealed that the APL neuron responded to both odor and electric-shock stimuli that was presented to the fly with increases of intracellular calcium and released neurotransmitter. Notably, a memory trace formed in the APL neuron by pairing odor with electric shock. This trace was detected as a reduced calcium response in the APL neuron after conditioning specifically to the trained odor. These results demonstrate a mutual suppression between the GABAergic APL neuron and olfactory learning, and emphasize the functional neuroplasticity of the GABAergic system as a result of learning.
PubMed ID
PubMed Central ID
PMC2680707 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Nat. Neurosci.
    Title
    Nature Neuroscience
    Publication Year
    1998-
    ISBN/ISSN
    1097-6256
    Data From Reference