FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Herranz, R., Benguría, A., Laván, D.A., López-Vidriero, I., Gasset, G., Javier Medina, F., van Loon, J.J., Marco, R. (2010). Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome.  Mol. Ecol. 19(19): 4255--4264.
FlyBase ID
FBrf0216346
Publication Type
Research paper
Abstract
Abstract Genome-wide transcriptional profiling shows that reducing gravity levels during Drosophila metamorphosis in the International Space Station (ISS) causes important alterations in gene expression: a large set of differentially expressed genes (DEGs) are observed compared to 1g controls. However, the preparation procedures for spaceflight and the nonideal environmental conditions on board the ISS subject the organisms to additional environmental stresses that demonstrably affect gene expression. Simulated microgravity experiments performed on the ground, under ideal conditions for the flies, using the random position machine (RPM), show much more subtle effects on gene expression. However, when the ground experiments are repeated under conditions designed to reproduce the additional environmental stresses imposed by spaceflight procedures, 79% of the DEGs detected in the ISS are reproduced by the RPM experiment. Gene ontology analysis of them shows they are genes that affect respiratory activity, developmental processes and stress-related changes. Here, we analyse the effects of microgravity on gene expression in relation to the environmental stresses imposed by spaceflight. Analysis using 'gene expression dynamics inspector' (GEDI) self-organizing maps reveals a subtle response of the transcriptome to microgravity. Remarkably, hypergravity simulation induces similar response of the transcriptome, but in the opposite direction, i.e. the genes promoted under microgravity are usually suppressed under hypergravity. These results suggest that the transcriptome is finely tuned to normal gravity and that microgravity, together with environmental constraints associated with space experiments, can have profound effects on gene expression.
PubMed ID
PubMed Central ID
Related Publication(s)
Note

Synergy between stresses: an interaction between spaceflight-associated conditions and the microgravity response.
Beckingham, 2010, Mol. Ecol. 19(19): 4105--4107 [FBrf0250007]

Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Ecol.
    Title
    Molecular Ecology
    Publication Year
    1992-
    ISBN/ISSN
    0962-1083
    Data From Reference