FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Okazaki, R., Yamazoe, K., Inoue, Y.H. (2020). Nuclear Export of Cyclin B Mediated by the Nup62 Complex Is Required for Meiotic Initiation in Drosophila Males.  Cells 9(2): E270.
FlyBase ID
FBrf0244623
Publication Type
Research paper
Abstract
The central channel of the nuclear pore complex plays an important role in the selective transport of proteins between the nucleus and cytoplasm. Previous studies have demonstrated that the depletion of the Nup62 complex, constructing the nuclear pore channel in premeiotic Drosophila cells, resulted in the absence of meiotic cells. We attempted to understand the mechanism underlying the cell cycle arrest before meiosis. We induced dsRNAs against the nucleoporin mRNAs using the Gal4/UAS system in Drosophila. The cell cycle of the Nup62-depleted cells was arrested before meiosis without CDK1 activation. The ectopic over-expression of CycB, but not constitutively active CDK1, resulted in partial rescue from the arrest. CycB continued to exist in the nuclei of Nup62-depleted cells and cells depleted of exportin encoded by emb. Protein complexes containing CycB, Emb, and Nup62 were observed in premeiotic spermatocytes. CycB, which had temporally entered the nucleus, was associated with Emb, and the complex was transported back to the cytoplasm through the central channel, interacting with the Nup62 complex. Conclusion: We proposed that CycB is exported with Emb through the channel interacting with the Nup62 complex before the onset of meiosis. The nuclear export ensures the modification and formation of sufficient CycB-CDK1 in the cytoplasm.
PubMed ID
PubMed Central ID
PMC7072204 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Cells
    Title
    Cells
    ISBN/ISSN
    2073-4409
    Data From Reference