FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Beati, H., Langlands, A., Ten Have, S., Müller, H.J. (2020). SILAC-based quantitative proteomic analysis of Drosophila gastrula stage embryos mutant for fibroblast growth factor signalling.  Fly 14(1-4): 10--28.
FlyBase ID
FBrf0247487
Publication Type
Research paper
Abstract
Quantitative proteomic analyses in combination with genetics provide powerful tools in developmental cell signalling research. Drosophila melanogaster is one of the most widely used genetic models for studying development and disease. Here we combined quantitative proteomics with genetic selection to determine changes in the proteome upon depletion of Heartless (Htl) Fibroblast-Growth Factor (FGF) receptor signalling in Drosophila embryos at the gastrula stage. We present a robust, single generation SILAC (stable isotope labelling with amino acids in cell culture) protocol for labelling proteins in early embryos. For the selection of homozygously mutant embryos at the pre-gastrula stage, we developed an independent genetic marker. Our analyses detected quantitative changes in the global proteome of htl mutant embryos during gastrulation. We identified distinct classes of downregulated and upregulated proteins, and network analyses indicate functionally related groups of proteins in each class. In addition, we identified changes in the abundance of phosphopeptides. In summary, our quantitative proteomic analysis reveals global changes in metabolic, nucleoplasmic, cytoskeletal and transport proteins in htl mutant embryos.
PubMed ID
PubMed Central ID
PMC7746239 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Fly
    Title
    Fly
    Publication Year
    2007-
    ISBN/ISSN
    1933-6934 1933-6942
    Data From Reference
    Genes (3)