FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Privman Champaloux, E., Donelson, N., Pyakurel, P., Wolin, D., Ostendorf, L., Denno, M., Borman, R., Burke, C., Short-Miller, J.C., Yoder, M.R., Copeland, J.M., Sanyal, S., Venton, B.J. (2021). Ring Finger Protein 11 (RNF11) Modulates Dopamine Release in Drosophila.  Neuroscience 452(): 37--48.
FlyBase ID
FBrf0247673
Publication Type
Research paper
Abstract
Recent work indicates a role for RING finger protein 11 (RNF11) in Parkinson disease (PD) pathology, which involves the loss of dopaminergic neurons. However, the role of RNF11 in regulating dopamine neurotransmission has not been studied. In this work, we tested the effect of RNF11 RNAi knockdown or overexpression on stimulated dopamine release in the larval Drosophila central nervous system. Dopamine release was stimulated using optogenetics and monitored in real-time using fast-scan cyclic voltammetry at an electrode implanted in an isolated ventral nerve cord. RNF11 knockdown doubled dopamine release, but there was no decrease in dopamine from RNF11 overexpression. RNF11 knockdown did not significantly increase stimulated serotonin or octopamine release, indicating the effect is dopamine specific. Dopamine clearance was also changed, as RNF11 RNAi flies had a higher Vmax and RNF11 overexpressing flies had a lower Vmax than control flies. RNF11 RNAi flies had increased mRNA levels of dopamine transporter (DAT) in RNF11, confirming changes in DAT. In RNF11 RNAi flies, release was maintained better for stimulations repeated at short intervals, indicating increases in the recycled releasable pool of dopamine. Nisoxetine, a DAT inhibitor, and flupenthixol, a D2 antagonist, did not affect RNF11 RNAi or overexpressing flies differently than control. Thus, RNF11 knockdown causes early changes in dopamine neurotransmission, and this is the first work to demonstrate that RNF11 affects both dopamine release and uptake. RNF11 expression decreases in human dopaminergic neurons during PD, and that decrease may be protective by increasing dopamine neurotransmission in the surviving dopaminergic neurons.
PubMed ID
PubMed Central ID
PMC7769989 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Neuroscience
    Title
    Neuroscience
    Publication Year
    1976-
    ISBN/ISSN
    0306-4522
    Data From Reference
    Alleles (8)
    Chemicals (2)
    Genes (4)
    Natural transposons (1)
    Experimental Tools (1)
    Transgenic Constructs (8)