FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Roy, G., Miron, M., Khaleghpour, K., Lasko, P., Sonenberg, N. (2004). The Drosophila poly(A) binding protein-interacting protein, dPaip2, is a novel effector of cell growth.  Mol. Cell. Biol. 24(3): 1143--1154.
FlyBase ID
FBrf0167891
Publication Type
Research paper
Abstract
The 3' poly(A) tail of eukaryotic mRNAs and the poly(A) binding protein (PABP) play important roles in the regulation of translation. Recently, a human PABP-interacting protein, Paip2, which disrupts the PABP-poly(A) interaction and consequently inhibits translation, was described. To gain insight into the biological role of Paip2, we studied the Drosophila melanogaster Paip2 (dPaip2). dPaip2 is the bona fide human Paip2 homologue, as it interacts with dPABP, inhibits binding of dPABP to the mRNA poly(A) tail, and reduces translation of a reporter mRNA by approximately 80% in an S2 cell-free translation extract. Ectopic overexpression of dPaip2 in Drosophila wings and wing discs results in a size reduction phenotype, which is due to a decrease in cell number. Clones of cells overexpressing dPaip2 in wing discs also contain fewer cells than controls. This phenotype can be explained by a primary effect on cell growth. Indeed, overexpression of dPaip2 in postreplicative tissues inhibits growth, inasmuch as it reduces ommatidia size in eyes and cell size in the larval fat body. We conclude that dPaip2 inhibits cell growth primarily by inhibiting protein synthesis.
PubMed ID
PubMed Central ID
PMC321445 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Cell. Biol.
    Title
    Molecular and Cellular Biology
    Publication Year
    1981-
    ISBN/ISSN
    0270-7306
    Data From Reference
    Alleles (6)
    Genes (4)
    Physical Interactions (3)
    Insertions (7)
    Experimental Tools (2)
    Transgenic Constructs (4)