FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Adamson, A.L., Wright, N., LaJeunesse, D.R. (2005). Modeling early Epstein-Barr virus infection in Drosophila melanogaster: the BZLF1 protein.  Genetics 171(3): 1125--1135.
FlyBase ID
FBrf0190699
Publication Type
Research paper
Abstract
Epstein-Barr virus (EBV) is the causative agent of infectious mononucleosis and is associated with several forms of cancer, including lymphomas and nasopharyngeal carcinoma. The EBV immediate-early protein BZLF1 functions as a transcriptional activator of EBV early gene expression and is essential for the viral transition between latent and lytic replication. In addition to its role in the EBV life cycle, BZLF1 (Z) also has profound effects upon the host cellular environment, including disruption of cell cycle regulation, signal transduction pathways, and transcription. In an effort to understand the nature of Z interactions with the host cellular environment, we have developed a Drosophila model of early EBV infection, where we have expressed Z in the Drosophila eye. Using this system, we have identified a highly conserved interaction between the Epstein-Barr virus Z protein and shaven, a Drosophila homolog of the human Pax2/5/8 family of genes. Pax5 is a well-characterized human gene involved with B-cell development. The B-cell-specific Pax5 also promotes the transcription of EBV latent genes from the EBV Wp promoter. Our work clearly demonstrates that the Drosophila system is an appropriate and powerful tool for identifying the underlying genetic networks involved in human infectious disease.
PubMed ID
PubMed Central ID
PMC1456816 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Genetics
    Title
    Genetics
    Publication Year
    1916-
    ISBN/ISSN
    0016-6731
    Data From Reference
    Alleles (10)
    Genes (10)
    Human Disease Models (1)
    Natural transposons (1)
    Experimental Tools (2)
    Transgenic Constructs (6)