FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Lamaze, A., Krätschmer, P., Chen, K.F., Lowe, S., Jepson, J.E.C. (2018). A Wake-Promoting Circadian Output Circuit in Drosophila.  Curr. Biol. 28(19): 3098--3105.e3.
FlyBase ID
FBrf0240295
Publication Type
Research paper
Abstract
Circadian clocks play conserved roles in gating sleep and wake states throughout the day-night cycle [1-5]. In the fruit fly Drosophila melanogaster, DN1p clock neurons have been reported to play both wake- and sleep-promoting roles [6-11], suggesting a complex coupling of DN1p neurons to downstream sleep and arousal centers. However, the circuit logic by which DN1p neurons modulate sleep remains poorly understood. Here, we show that DN1p neurons can be divided into two morphologically distinct subsets. Projections from one subset surround the pars intercerebralis, a previously defined circadian output region [12]. In contrast, the second subset also sends presynaptic termini to a visual processing center, the anterior optic tubercle (AOTU) [13]. Within the AOTU, we find that DN1p neurons inhibit a class of tubercular-bulbar (TuBu) neurons that act to promote consolidated sleep. These TuBu neurons in turn form synaptic connections with R neurons of the ellipsoid body, a region linked to visual feature detection, locomotion, spatial memory, and sleep homeostasis [14-17]. Our results define a second output arm from DN1p neurons and suggest a role for TuBu neurons as regulators of sleep drive.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Curr. Biol.
    Title
    Current Biology
    Publication Year
    1991-
    ISBN/ISSN
    0960-9822
    Data From Reference