FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Artero, R.D., Castanon, I., Baylies, M.K. (2001). The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling.  Development 128(21): 4251--4264.
FlyBase ID
FBrf0139638
Publication Type
Research paper
Abstract
Hibris (Hbs) is a transmembrane immunoglobulin-like protein that shows extensive homology to Drosophila Sticks and stones (Sns) and human kidney protein Nephrin. Hbs is expressed in embryonic visceral, somatic and pharyngeal mesoderm among other tissues. In the somatic mesoderm, Hbs is restricted to fusion competent myoblasts and is regulated by Notch and Ras signaling pathways. Embryos that lack or overexpress hbs show a partial block of myoblast fusion, followed by abnormal muscle morphogenesis. Abnormalities in visceral mesoderm are also observed. In vivo mapping of functional domains suggests that the intracellular domain mediates Hbs activity. Hbs and its paralog, Sns, co-localize at the cell membrane of fusion-competent myoblasts. The two proteins act antagonistically: loss of sns dominantly suppresses the hbs myoblast fusion and visceral mesoderm phenotypes, and enhances Hbs overexpression phenotypes. Data from a P-homed enhancer reporter into hbs and co-localization studies with Sns suggest that hbs is not continuously expressed in all fusion-competent myoblasts during the fusion process. We propose that the temporal pattern of hbs expression within fusion-competent myoblasts may reflect previously undescribed functional differences within this myoblast population.
PubMed ID
PubMed Central ID
DOI
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Development
    Title
    Development
    Publication Year
    1987-
    ISBN/ISSN
    0950-1991
    Data From Reference
    Aberrations (3)
    Alleles (16)
    Genes (11)
    Sequence Features (1)
    Insertions (2)
    Experimental Tools (2)
    Transgenic Constructs (8)